The degenerate special Lagrangian equation on Riemannian manifolds.

Speaker: 

Matthew Dellatorre

Institution: 

University of Maryland

Time: 

Tuesday, November 13, 2018 - 4:00pm

Location: 

RH 306

We show that the degenerate special Lagrangian equation (DSL), recently introduced by Rubinstein–Solomon, induces a global equation on every Riemannian manifold, and that for certain associated geometries this equation governs, as it does in the Euclidean setting, geodesics in the space of positive Lagrangians. For example, geodesics in the space of positive Lagrangian sections of a smooth Calabi–Yau torus fibration are governed by the Riemannian DSL on the base manifold. We then develop their analytic techniques, specifically modifications of the Dirichlet duality theory of Harvey–Lawson, in the Riemannian setting to obtain continuous solutions to the Dirichlet problem for the Riemannian DSL and hence continuous geodesics in the space of positive Lagrangians

Nonuniqueness for a fully nonlinear boundary Yamabe-type problem via bifurcation theory

Speaker: 

Yi Wang

Institution: 

Johns Hopkins University

Time: 

Tuesday, October 9, 2018 - 4:00pm to 5:00pm

Host: 

Location: 

306 Rowland Hall

We consider $\sigma_k$-curvature equation with $H_k$-curvature condition on a compact manifold with boundary $(X^{n+1}, M^n, g)$. When restricting to the closure of the positive $k$-cone, this is a fully nonlinear elliptic equation with a fully nonlinear Robin-type boundary condition. We prove a general bifurcation theorem in order to study nonuniqueness of solutions when $2k<n+1$. We explicitly give examples of product manifolds with multiple solutions. It is analogous to Schoen’s example for Yamabe problem on $S^1\times S^{n-1}$. This is joint work with Jeffrey Case and Ana Claudia Moreira.

Bershadsky--Cecotti--Ooguri--Vafa torsion in Landau--Ginzburg models

Speaker: 

Guangbo Xu

Institution: 

SUNY Stony Brook

Time: 

Tuesday, October 9, 2018 - 3:00pm to 4:00pm

Host: 

Location: 

306 Rowland Hall

In the celebrated work of Bershadsky--Cecotti--Ooguri--Vafa the genus one string partition function in the B-model is identified with certain analytic torsion of the Hodge Laplacian on a K\"ahler manifold. In a joint work with Shu Shen (IMJ-PRG) and Jianqing Yu (USTC) we study the analogous torsion in Landau--Ginzburg models. I will explain the corresponding index theorem based on the asymptotic expansion of the heat kernel of the Schr\"odinger operator. I will also explain the rigorous definition of the BCOV torsion for homogeneous polynomials on ${\mathbb C}^N$. Lastly I will explain the conjecture stating that in the Calabi--Yau case the BCOV torsion solves the holomorphic anomaly equation for marginal deformations.

Pages

Subscribe to RSS - Differential Geometry