Products of Cantor sets and Spectral Properties of Labyrinth Model

Speaker: 

Yuki Takahashi

Institution: 

UC Irvine

Time: 

Tuesday, April 1, 2014 - 1:00pm to 2:00pm

Location: 

RH 440R

We prove that the product of two Cantor sets of large thickness is an interval in the case when one of them contains the origin. We apply this result to the Labyrinth model of a two-dimensional quasicrystal, where the spectrum is known to be the product of two Cantor sets, and show that the spectrum becomes an interval for small values of the coupling constant. We also consider the density of states measure of the Labyrinth model, and show that it is absolutely continuous with respect the Lebesgue measure for most values of coupling constants.

Information propagation in 1D quantum spin chains via linear ODEs with Hermitian field

Speaker: 

William Yessen

Institution: 

Rice University

Time: 

Tuesday, March 4, 2014 - 1:00pm to 2:00pm

Host: 

Location: 

RH 440R

Since the early 1970's, it has been known in both, the mathematical physics and in the physics communities, that propagation of information in quantum spin chains cannot exceed the so-called Lieb-Robinson bound (effectively providing the quantum analog of the light cone from the relativity theory). Typically these bounds depend on the parameters of the model (interaction strength, external field). The recent Hamza-Sims-Stolz result demonstrates exponential localization (a la Anderson localization) of information propagation in most spin chains (in the sense of a given probability distribution with respect to which interaction and external field couplings are drawn). A natural question arises: what can be said about lower bounds on propagation of information in spin crystals (i.e. the case far from the one in which localization is expected), as well as in the intermediate case--the spin quasicrystals. This problem can be reduced to solving a linear ODE given by a Hermitian matrix, the solutions of which live on finite-dimensional complex spheres.

In this talk we shall discuss the history, give a general overview of the field, reduce the problem to an ODE problem as mentioned above, and look at some open problems. We shall also present some numerical computations with animations.

 

Sums of Cantor sets and convolutions of singular measures

Speaker: 

Anton Gorodetski

Institution: 

UC Irvine

Time: 

Tuesday, October 29, 2013 - 2:00pm to 3:00pm

Location: 

RH 440R

Questions about the structure of sums of Cantor sets, as well as related questions on properties of convolutions of singular measures, appear in dynamical systems (due to persistent homoclinic tangencies and Newhouse phenomena), probabilities, number theory, and spectral theory. We will describe the recent results (joint with D.Damanik and B.Solomyak) that claim that under some natural technical conditions convolutions of measures of maximal entropy supported on dynamically dened Cantor sets in most cases (for almost all parameters in a one parameter family) are absolutely continuous. This provides a rigorous proof of absolute continuity of the density of states measure for the Square Fibonacci Hamiltonian in the low coupling regime, which was conjectured by physicists more than twenty years ago.

Lipschitz inverse shadowing and structural stability

Speaker: 

Dmitry Todorov

Institution: 

Chebyshev laboratory, Saint-Petersburg, Russia

Time: 

Tuesday, November 5, 2013 - 2:00pm to 3:00pm

Location: 

RH 440R

There is known a lot of information about classical or standard shadowing. It is also often called a pseudo-orbit tracing property (POTP). Let M be a closed Riemannian manifold. Dieomorphism f : M \to M is said to have POTP if for a given accuracy any pseudotrajectory with errors small enough can be approximated (shadowed) by an exact trajectory. A similar denition can be given for flows.

Most results about this property prove that it is present in certain hyperbolic situations. Quite surprisingly, recently it has been proven that a quantitative version of it is in face equivalent to hyperbolicity (structural stability).

There is also a notion of inverse shadowing that is a kind of a converse to the notion of classical shadowing. Dynamical system is said to have inverse shadowing property if for any (exact) trajectory there exists a pseudotrajectory from a special class that is uniformly close to the original exact one.

I will describe a quantitative (Lipschitz) version of this property and why it is equivalent to structural stability both for dieomorphisms and for flows.

Fractal Spectra of Operators on Aperiodic Sequences and Tilings

Speaker: 

May Mei

Institution: 

Denison University

Time: 

Tuesday, November 5, 2013 - 10:00am to 11:00am

Host: 

Location: 

RH 340P

The Nobel Prize-winning discovery of quasicrystals has spurred much work in aperiodic sequences and tilings. Here, we present numerical experiments conducted by undergraduates at the Summer Math Institute at Cornell under our supervision. Building on our previous work involving one-dimensional discrete Schrodinger operators with potentials given by primitive invertible substitutions on two letters, we present preliminary numerical data on the box-counting dimension and Hausdorff dimension of the spectrum of operators with potentials given by the Thue-Morse sequence and period doubling sequence. We also present preliminary numerical data on the spectrum of the discrete Laplacian on the Penrose tiling and octagonal tiling.

Norm Approximation in Ergodic Theory

Speaker: 

Joseph Rosenblatt

Institution: 

University of Illinois at Urbana-Champaign

Time: 

Tuesday, October 22, 2013 - 1:00pm to 2:00pm

Host: 

Location: 

RH 440R

Classical ergodic averages give good norm approximations, but these averages are not necessarily giving the best norm approximation among all possible averages. We consider
1) what the optimal Cesaro norm approximation can be in terms of the transformation and the function,
2) when these optimal Cesaro norm approximations are comparable to the norm of the usual ergodic average, and
3) oscillatory behavior of these norm approximations.

Pages

Subscribe to RSS - Dynamical Systems