Recent progress on the L^{2}-critical, defocusing semilinear Schr\"odinger equation

Speaker: 

Nikos Tzirakis

Institution: 

University of Toronto

Time: 

Wednesday, February 14, 2007 - 4:00pm

Location: 

MSTB 254

In this talk I will describe the progress that has been made so far
concerning the existence of global strong solutions to the
L^{2}-critical defocusing semilinear Schr\"odinger equation. A long
standing conjecture in the area is the existence
of a unique global strong L^{2}
solution to the equation that in addition scatters to a free solution as
time goes to infinity. I will demonstrate the proofs of partial results
towards an attempt for a final resolution of this conjecture.
I will concentrate on the low dimensions but give the flavor of the results in higher dimensions for general or spherically symmetric initial data in certain Sobolev spaces.
Many authors have contributed to the theory of this equation. I will convey my personal involment to the problem and the results that I have obtained recently. Part of my work is in collaboration with D. De Silva, N. Pavlovic, G.
Staffilani, J. Colliander and M. Grillakis.

On a splitting scheme for the nonlinear Schroedinger equation in a random medium.

Speaker: 

Renaud Marty

Institution: 

University of California, Irvine

Time: 

Friday, February 9, 2007 - 4:00pm

Location: 

MSTB 254

We consider a nonlinear Schroedinger equation (NLS) with random coefficients, in a regime of separation of scales corresponding to diffusion approximation. Our primary goal is to propose and study an efficient numerical scheme in this framework. We use a pseudo-spectral splitting scheme and we establish the order
of the global error. In particular we show that we can take an integration step larger than the smallest scale of the problem, here the correlation length of the random medium. Then, we study the asymptotic behavior of the numerical solution in the diffusion approximation regime.

On recent development on the Green's functions of the Boltzmann equations and the applications to nonlinear problems

Speaker: 

Professor Shih-Hsien Yu

Institution: 

City University of Hong Kong

Time: 

Friday, February 2, 2007 - 4:00pm

Location: 

MSTB 254

In this talk we will survey the development on the Green's functions of the Boltzmann equations. The talk will include the motivation from the field of hyperbolic conservation laws, the connection between the Boltzmann equation
and the hyperbolic conservation laws, and the particle-like and the wave-like duality in the Boltzmann equation. With all these components one can realize a clear layout of the Green's function of the Boltzmann equation. Finally we will present the application of the Green's function the an initial-boundary value problem in the half space domain.

Global Existence in 3d Nonlinear Elastodynamics

Speaker: 

Professor Thomas Sideris

Institution: 

University of California, Santa Barbara

Time: 

Friday, October 19, 2007 - 4:00pm

Location: 

MSTB 254

We will discuss the equations of motion for 3d homogeneous isotropic elastic materials, in the compressible and incompressible case. We will present results on global existence of solutions to the initial value problem, under the assumption of small deformations and with appropriate structural conditions.

Pages

Subscribe to RSS - Nonlinear PDEs